MMP Learning Seminar
Week 95:
Conlent.
Termination of posedelo e effecive 4- fold flps

Minimal Model Program:

- Existence of flips.
- Termination of flips.
- Abundance conjecture. $(K x$ ref $\Longrightarrow K \times$ semiample).

Existence:
Mon 88: Existence of flips for terminal 3-folds
Show 92:" "kit 3 -folds
Show 96: " " " k 3 -folds.
Show 06 : of flips for some 4-folds
BCHM O6: Existence of kIt flips.
HX, Birkar 2010: Existence of lc flips.

Termination:
Show 92,96: Termination of 3-fold lc flips.
Fug 04: Termination of flips for term/canonical 4-folds
BCHM 06: Termination of flips with scaling for general type kIt pairs
A bondance:
Haw: In dimension 3, the terminal case
Mckerinan-Keel: In dimension 3, the l_{c} case.

MAP $(\log$ canonical)
$\operatorname{dim} 3$

$$
\operatorname{dim} 4
$$

$$
\operatorname{dim} 5
$$

folly settled.

Missing:

- Termination of flips when X is uniruled
- Abundance
- Abundance.

Theorem ($M, 2018$): X kit prog 4-fold with K_{x} pseft. Then any MMP for X terminates.

Generalized pairs:
$(X, B, M) \quad X$ normal prog.

$X \supseteq M$.

${ }^{\text {Cirationally. }} \quad K\left(B+B+M\right.$ is \mathbb{R} - $C_{\text {addition }}$

log discrepancies: $\quad Y \underset{\varphi}{\text { poos } b_{0}} X \quad \varphi^{x}\left(K_{x}+B+M\right)=K_{r}+B_{r}+M_{r}$

$$
\sigma_{E}(X, B, M)=1-\operatorname{coeff}_{E}\left(B_{r}\right) .
$$

(X, B, M) is grit if $\alpha_{E}(X, B, M)>0$.
(X, B, M) is gie if $\alpha_{E}(X, B, M) \geqslant 0$.
(X, B, M) is gilt if it is glee \& the glace are strata

$$
\text { of }\lfloor B\rfloor \text {. }
$$

Example:

Then K_{x} is pooh forourds of nee

$$
M=K_{x}=p_{*} \underbrace{\text { ped }}_{\substack{n f \\ g^{*}\left(K_{x_{m n}}\right)} \text { what is the number that we can wite here so this is ole. }}
$$

T what is the neper that we can write here so this is gie

$$
(X, \lambda M) \quad K_{x}+M v_{a} K_{x}+K_{x}=2 K_{x}
$$

Definition: Let M be a b-net divisor
X be a kit variety.

$$
g \operatorname{lct}(X ; M)=\max \{t \mid(X, t M) \text { is glc }\} \text {. }
$$

Remark: The less positive M is on X, the smaller these numbers get.
M is ref on $X($ descends on $X)$ then $\operatorname{glct}(X ; M)=\infty$.
Theorem (Birkar-Zhang): M is b-net divisor with
Cather index I. X kit projective n-dim variety,
Then gloat (X,M) belongs an ACC set that only depends on $n \& I$

Special Termination:
(X, B, M) gIlt pair $S=L B\rfloor=\operatorname{glce}(X, B, M)$
Let $X \rightarrow X^{+}$is an step of the $(K x+B+M)-$ MM
that interseds S

Flip:

- π is $(K x+B+M)-n e g$.
N. π is smell.
- $\rho(x / w)=\rho\left(x^{+} / w\right)=1$
- $(K x+B+M)$ is anti2mple over W
\& $\left(K_{x+}+B^{+}+M^{+}\right)$ample over W.
These define a quasi-flip.
Lemma 1: The induced birational map.

$$
\left(s, B_{s}, M_{s}\right) \cdots\left(S^{+}, B_{s^{+}}, M_{s^{+}}\right) .
$$

is a quasi-flip.
Proof: Follows from adjunction \& negativity Lemma.

Lemma 2: Assume termination of flips in $\operatorname{dim} n$,
Then any sequence of quasi-flips in $\operatorname{dim} n$ under a DCC set. terminates.

coefficient of the divisors that we extract belongs to a DCC set.

Proof: Using the condition on the DCC one can show. that oflips terminate in codimension 1.

Proposition 1: Assume termination of flips in dimension $n-1$.
Let (X, B, M) be a gen dit pair of dim n.
Then, any MMP for $(X, B+M)$ is eventually disjoint from $\lfloor B\rfloor$.

Remark: The \# of \log discrepancies in $[0,1]$ is finite for a gilt pair.

3-fold sing:
rNa Carline
($X_{i x}$) terminal 3 -fold sing. of index r.

$$
\pi_{1}^{\operatorname{loc}}\left(X_{i x}\right) \simeq \mathbb{Z}_{1} / r \mathbb{Z}_{1}
$$

Theorem (Chen, 90's): Let $\left(X_{i x}\right)$ be a terminal 3-fold sing of index r. There exits weighted blow-up extracting a divisor with \log discrepancy $1+\frac{1}{r}$.

Corollary: $\left(X_{i x}\right)$ terminal 3 -fold sing \# of divisors with \log discrepancy in $(0,1+\varepsilon)$ is $<N$. Then $\left|\pi_{1}{ }^{\operatorname{loc}}\left(X_{i x}\right)\right|<f(\varepsilon, N)$.
Theorem (Shokurov): ($X_{i x}$) kIt 3-fold sing
\# of divisors with log discrepancy in $(\varepsilon, 1+\varepsilon)$ is $<N$.
Then $\left|\pi_{1}{ }^{\operatorname{loc}}(X ; x)\right|<f(\varepsilon, N)$.

Remark: $\left(X_{i x}\right)$ kit sing.
$Y \xrightarrow{\varphi} X \quad \log$ resolution
D Q - Cartier through x.
Then, the index of D at x is controlled above by the largest denom of $\varphi^{*}(D)$.
(This is an application of Cone Theorem).
$m\left(\varphi^{x} D\right)$ Cartier $=$ Line bundle

$$
m\left(\varphi^{*} D\right) \equiv x 0
$$

Proposition 2: (X, B, M) is gen ε-jolt (all log dosup $\geqslant \varepsilon$) \# of \log discrepencices in $(\varepsilon, \varepsilon+1)<N$.
Assume corf $B \&$ coff $M \in R$ finite set.
Then, there exists a fife set $A(R, \varepsilon, N)$
(A) $a_{E}(X, B, M) \in[0,1] \Longrightarrow a_{E}(X, B, M) \in A$.

* A) $\alpha_{E}(X, B, M) \in[0,2] \Longrightarrow a_{E}(X, B, M) \in A$. $C_{E}(X)$ is a curve

Termination of flips for guilt 3 -folds:

$$
(X, B, M) \cdots\left(X_{1}, B_{1}, M_{1}\right) \cdots \ldots \text { sequence of flips }
$$

Step 1: Reduce to the Q-factorial
Step 2: We control $\varepsilon, N \& R \Longrightarrow\left|\pi_{1}\left(X_{i} \mid x\right)\right|<f(\varepsilon, N)$ for any $x \&$ i.
Step 3: Wc reduce to the case in which

$$
(X, B, M) \text { is terminal }
$$

Step 4: Reduce to the case when $B=0$.

Step 5: Reduce to the case when $M=0$
We finally reduced to the terminal case with $B=M=0$

Theorem: Termination of pref 4-fold flips.
Proof, We know that there is a minimal model $X_{\text {min }}$

$\lambda_{2} \quad \check{X}_{1} \quad$ Also a sequence of flips $\left(X_{i}, \lambda_{i}, M\right)$.

λ_{2}	\vdots
\vdots	x_{1}
λ_{3}	

$\lambda_{3} \quad X_{3} \quad \lambda_{i} \leqslant \lambda_{i+1}$

4-dim
It most stabilize with λ_{00}.

$$
\left(X, \lambda_{\infty} M\right) \cdots\left(X_{1}, \lambda_{\infty} M\right) \cdots \ldots\left(X_{n} \lambda_{\infty} M\right) \cdots
$$

gaIt 3 -dim term \Longrightarrow special termination in $\operatorname{dim} 4$.
this sequence is eventually disjoint from

$$
\begin{array}{r}
\quad \operatorname{glcc}\left(X_{i}, \lambda_{\infty} M\right)=W_{i} \\
\lambda_{i}^{\prime}=g^{\operatorname{lct}}\left(X_{i} \backslash W_{i}, M\right)>\lambda_{\infty}
\end{array}
$$

$$
\begin{aligned}
& \lambda_{1}^{\prime} \leqslant \lambda_{2}^{\prime} \leqslant \lambda_{3}^{\prime} \leqslant \ldots \quad \xrightarrow{B Z 16} \lambda_{\infty}^{\prime}>\lambda_{\infty} \\
& \lambda_{\infty 0}<\lambda_{\infty}^{\prime}<\lambda_{\infty}^{\prime \prime}<\lambda_{\infty}^{\prime \prime \prime}<\ldots \\
& { }_{\text {will violale BZI6. }}
\end{aligned}
$$

